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ABSTRACT 
The analysis of enhanced oil recovery using surfactants is presented here. Surfactants lower the surface 
tension between oil and water and hence the capillary resistance to flow. The mathematical description of 
this problem requires modelling of multi-phase flow in a porous medium. A pressure-based formulation 
has been used in the present study. The governing partial differential equations have been solved by a 
finite difference method. Both Newtonian and non-Newtonian (shear thinning) behaviour of oil are 
considered. Results clearly show an improvement in oil recovery in the presence of surfactants. A study 
of the ideal case where surface tension is reduced to zero shows that oil recovery can be very high. 
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N O M E N C L A T U R E 

C tortuosity factor, So,w saturation of oil and water in the porous 
H consistency index in Herschel-Bulkley region, 

model, Nsn/m2, t, ∆t time and time step, s, 
Hi phase enthalpy, J/Kg, T temperature, °C, 
K absolute permeability of the formation, Tf temperature of rock formation, 

m , x, y Cartesian coordinates, m, 
Keff absolute permeability of the formation in ∆x,∆Ay grid size along x and y axis respectively, 

the presence of shear thinning behaviour m. 
of oil, m2, 

Kn absolute permeability of the formation in Greek symbols 
the presence of Newtonian behaviour of 
oil, m2, β expansivity, ° C - 1 , 

Kro,w relative permeability of oil and water ξ compressibility, P a - 1 , 
respectively, µ dynamic viscosity of the fluid phase, 

L length of the domain, m, N m/s, 
pc capillary pressure between oil and water ε Porosity. 

phases, N/m 2 , 
po,w phase pressure of oil and water respec- Superscript 

tively, N/m 2 , 
p1,2 absolute pressures on injection and exit n current time step. 

planes, N/m 2 , 
p1 absolute pressure at oil-water interface, Subscrift 

N/m2 , 
ppv percentage pore volume of oil recovery, i, j node indices along x and y axis 
Qo , w mass sources for oil and water. respectively. 
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INTRODUCTION 

Oil is trapped in the microscopic pores of the earth's crust and will flow only when large pressure 
differences are applied. The pores are tortuous, interconnected and irregular. Resistance to flow 
of hydrocarbons in these pores arises from both viscous and capillary effects. Surfactants can 
be used to lower the capillary resistance to flow. 

As early as 1927, Uren and Fahmy1 concluded that an inverse relationship exists between 
oil-water interface tension and the percentage of oil recovered by water-flooding. Since then the 
necessity of reducing the interfacial tension between oil and the flooding medium was realised 
and the importance of surfactants is now well established. 

Surfactants are surface active chemicals mixed with the injected water that reduce interfacial 
tension between oil and water. This leads to a considerable reduction in capillary forces and a 
consequent increase in the recovery of oil. In the present study oil production for the following 
three problems have been compared against one another: (1) oil extraction without surfactants; 
(2) extraction with the partially effective surfactant; (3) the ideal case when capillary resistance 
is zero. 

The third problem represents the absolute maximum oil recovery that is possible in the absence 
of surface tension. In all the three problems non-Newtonian behaviour of oil is considered in 
the analysis. Oil is modelled as a power-law fluid that displays shear thinning behaviour under 
the influence of large shear stresses. Flow in the porous medium is modelled accordingly using 
a modified Darcy's law2. Oil recovery is seen to increase when shear-thinning is included in the 
model equations. 

FORMULATION 

The physical model used in the present study is shown in Figure 1. The flow is two dimensional 
and we solve for the oil and water pressures separately. The differences between the two pressures 
is a measure of the surface tension. This results in a complete two phase model of flow occurring 
in a porous region. 

Equations governing velocity and pressure are as follows3,4: 
(1) conservation of mass of both oil and water phases; 
(2) modified Darcy's law that includes the capillary as well as viscous resistance and shear 

thinning behaviour of the oil phase; 
(3) constitutive relations that supply information about the capillary pressure and the 

non-Newtonian behaviour of the fluids involved; 
(4) equations of state for oil and water properties as a function of temperature. 
These equations can be combined to generate a set of two coupled, non-linear partial differential 

equations for the oil and water phase pressures. These equations must be solved subject to 
suitable initial and boundary conditions. The mathematical model predicts the movement of 
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the water front from the inflow plane into the oil-rich porous region. This increase in water 
saturation is a measure of the amount of oil displaced. Oil displacement is measured in terms 
of the percentage pore volume (ppv). ppv is the ratio of the total volume of oil produced and 
the total pore volume of the porous medium. 

MATHEMATICAL MODEL 

The mass balance equations in the oil and water phases are jointly writeen as3: 

where t is time, is the gradient operator, u is the velocity vector, ρ is density, S is saturation 
and ε is porosity. Index i refers individually to the oil phase and the water phase. In a two phase 
flow problem we require ΣSi= 1. Q is mass source term for the appropriate phase and has been 
taken to be zero in the present study. The momentum equation is expressed in the form of a 
modified Darcy's law: 

Here K is the absolute permeability of the oil-rich rock formation, Kr is the relative permeability, 
µ is viscosity and pi is the phase pressure. In general both oil and water containing surfactants 
can exhibit non-Newtonian behaviour and hence K is a function of the local pressure gradient. 
In the present work the surfactant solution is assumed to retain Newtonian behaviour. The 
relative permeability depends on pc, the local capillary pressure. The capillary pressure prevents 
equalization of the phase pressures and hence, pc = poil — pwater is non-zero. 

Oil trapped in the pores of the earth can also display viscoplastic behaviour. In such problems 
(2a) is modified to the form: 

= 0, otherwise 
Here Gi is a constant and is zero for Newtonian fluids. It is the threshold pressure gradient 
below which there is no flow. 

The shear thinning behaviour of oil is well-described by the Herschel-Bulkley model2. In this 
model the appropriate form of K in (2a) for the oil phase is given as: 

Here Kn is the absolute permeability of the formation in the absence of non-Newtonian behaviour 
and µeff is given as: 

In the above equation H is the consistency index of the Herschel-Bulkley model and n is the 
flow behaviour index equivalent to the index in power law fluid. C is the tortuosity factor of 
the formation. Based on the data presented in Reference 2, C is taken as 25/12 in this study. 
Equation (2d) reduces to the Newtonian case of µeff = H = µo and Keff = Kn for n = 1. 

Non-Newtonian behaviour can be further complicated by variations in surfactant 
concentrations in the fluid phase. This effect can be modelled by writing a transport equation 
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for concentration that accounts for advection and diffusion. This has not been accounted for in 
the present calculations. 

If the injected water temperature is different from the formation temperature (1) and (2) must 
be supplemented with the energy equation. Temperature variations significantly affect fluid 
properties and hence the oil recovery. The energy equation determines the temperature field and 
is written as: 

In (3), T is the local volume-averaged temperature, Hi is the phase enthalpy and k is the composite 
thermal conductivity. 

In (1), (2) and (3) one can view the phase pressures pi and temperature T as the dependent 
variables. All other quantities are supplied in the form of equations of state. These equations 
are stated below: 

Typical values of parameters appearing in (4) are taken from Reference 5 and summarized in 
Table 1. The expressions related to unsaturated flow namely, Kri = Kri(Sw) and pc = pc(Sw) are 
shown in Figure 2. Since Σ Si = 1 the functional relationship can be shown in terms of water 
or oil saturation alone. In the present study results have been obtained in terms of the water 
saturation. An increase in water saturation with time clearly shows oil displacement. 

In Figure 2, curve (a) shows relative permeability as a function of saturation when the injected 
water is free of surfactants. Curve (b) shows this relationship in the presence of dissolved 
surfactants. Normal concentrations of these additions are small enough to keep the density of 
water unchanged6. Case (c) referred to in Figure 2 corresponds to the ideal case when capillary 
resistance has been reduced to zero. 

It must be pointed out at this stage that the formulation of the oil recovery problem can 
alternatively be carried out in terms of water saturation and one of the phase pressures as the 
dependent variables. The water saturation equation is of the advection-diffusion type. Hence, 
under certain conditions, this approach can lead to difficulties in numerical computation of the 
water saturation since the water-oil interface can be quite sharp. In contrast to this the pressure 
field is governed by a diffusion-like equation and must be continuous everywhere. This guarantees 
an improvement in the accuracy of the numerical simulation as higher order finite difference 

Table I Properties used in numerical calculation 
Absolute permeability, K = 132 Darcies 
Porosity, Ε = 0.375 
Compressibility: oil, ξo, = 0.03447 Pa - 1 , water, ξw = 0.02137 Pa - 1 

In situ formation pressure = 1.31 Mpa 
Injection pressure = 1.793 Mpa 
Dynamic viscosity (Pa s): 

Oil 
Water 

20°C 

4.12 
1.03 × 1 0 - 3 

40°C 

2.37 
6.6 × 1 0 - 4 

60°C 

0.61 
4.73 × 10-4 

80°C 

0.10 
3.67 × 10-4 
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methods are used on a refined mesh. For this reason, oil and water pressures have been used 
as the primary dependent variables in the present work. 

The pressure and temperature equations derived from (l)-(4) can be shown to be the following: 

In (5), sgn = 1 for water and — 1 for oil. In (6), 

The present study examines the role of surfactants in improving oil recovery and the effect 
of shear thinning behaviour of oil. Accordingly we assume the formation temperature to be 
prescribed and equal to the injection water temperature. Equation (5) is solved on a rectangular 
domain subject to a quiescent initial condition, impermeable confining walls and specified water 
and oil pressures on the inflow and outflow planes of the physical domain. These conditions 
are shown schematically in Figure 1. 

The use of Dirichlet boundary condition on the outflow plane is justified only if the location 
of this plane is far away from the region effected by water injection. In the present work oil 
recovery is computed over a distance of 2 m and the outflow plane is located at a distance of 
4 m from the inflow plane. For the time period of three hours considered in the present simulation 
the water front moves a distance of approximately 1 m. Numerical experiments show that oil 
recovery is insensitive to the location of the outflow plane. 
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NUMERICAL SOLUTION 

The oil and water pressure equations arising from (5) are strongly coupled and non-linear. They 
have been solved using a control-volume finite difference method. The difference equations are 
solved simultaneously to extract the fluid pressures. Central differencing is used for the spatial 
derivatives and time marching proceeds via a fully implicit scheme. Hence the numerical 
procedure is unconditionally stable with respect to the time step. Interfacial property values 
falling on the control surface are evaluated as the harmonic average of neighbouring nodal 
values. Since the equations are non-linear Picard iterations are used within each time step to 
obtain a converged solution. 

The finite difference forms of (5) are given below. The oil and water temperatures are assumed 
to be equal in this development. Here ∆x and ∆y define a Cartesian mesh and ∆t is the time 
step. A grid size of ∆x = 0.05 m and ∆y = 0.2 m is used. The time step varies from 0.001 h at 
small time to 0.02 h at larger times. A convergence criterion of 0.01 (maximum relative change 
of pressure at any node in each iteration) is imposed. Convergence is monotonically attained 
and hence no under-relaxation is used. The current time level is represented by n and the future 
time by n + 1. 

Oil 
[Ao po i + 1j + Bo p o i j + Co pwij + Do po i-1j + Eo i po j+1 + Fo p o i j - 1 ] n + 1 = Go

n +1 (7a) 

Water 
[Aw pw i + 1 j + Bw pw i j + Cw po i j + Dw pw i-1j + Ew pwij + 1 + Fw pwij-1] n + 1 = Gw

n + 1 (7b) 
The coefficients Ao, Bo ,..., Fw , Gw are given as: 

Equation (7a) 
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Equation(7b) 

Here θ = KKro ρ/εµo and γ = KKrw ρw/εµw. 
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In expressions for the coefficients A,B,...,G given above, the suffixes e, w, n, and s stand 
for the locations midway between (i, i + 1), (i, i - 1), (j,j + 1) and (j,j - 1) respectively. The 
corresponding properties are calculated as the harmonic average of their values prevailing at 
the nearest nodes. For example, γe = harmonic average of (γ(i + 1), γ(i)). The matrix structure 
arising from (7a) and (7b) are shown in Figure 3. The matrix so obtained is banded and sparse. 
A sparse matrix inverter7 is used in the present work to simultaneously solve for the oil and 
water pressures. 

The finite difference algorithm developed here has been used to solve the system of coupled 
equations, 

for a known form of distributions of Ko and Kw. The numerical results for this problem compare 
very well with the analytical solution. The finite difference algorithm presented above has also 
been used to study the simulation of oil recovery using hot water injection8. 

A Newton-Raphson scheme for the non-linear iterations has also been tried in the present 
work. One of the principal difficulties while using this method is the computation of derivatives 
such as dSw/dpc from the constitutive relations. These relations are in the form of raw data and 
because of the possibility of large changes in a variable especially at low water saturation, the 
derivative calculation becomes inaccurate. Experience gained in the present study shows the 
need for very small time steps or the use of small relaxation factors. In either case the 
computational effort with the Newton-Raphson scheme is larger than with Picard iterations. 

ALGORITHM 

The system of equations governing the distribution of oil and water pressures are non-linear 
and mutually coupled. They are solved simultaneously and by iteration. As stated earlier, the 
mass sources have been set equal to zero in the present study. The following procedure has been 
used to solve for oil and water pressure distributions as functions of time. 

(1) The initial distributions of po, pw and Sw at t = 0 are prescribed. 
(2) The coefficients (Ao — Go and Aw — Gw) of the pressure equations are computed using the 

values of po, pw and Sw at the current time step and iteration level. 
(3) The system of pressure equations is solved to obtain the new values of po and pw at the 

nodes formed by the grid. 
(4) Sw is updated via the constitutive relatiens using the new pressure values. 
(5) Fluid viscosity and compressibility are updated at this stage. 
(6) Steps (1)-(5) are repeated until convergence of po and pw is achieved. 
(7) Fresh computation is initiated for the next time step starting from step (2). 
A three hour simulation typically takes 3 hours of CPU time on a mainframe computer such 

as HP 9000. 

IDEAL CASE 

We discuss below the limiting case of an ideal surfactant which when added to the injected water 
eliminates surface tension altogether. Hence the relative permeability and capillary pressure 
reach their limiting values of unity and zero respectively. A water front moves through porous 
medium under these conditions displacing oil completely. In modelling the ideal case we assume 
that the water saturation in the water phase ahead of the front is at its maximum value, controlled 
by the irreducible oil saturation. Beyond the front the water saturation is a minimum, equal to 
the irreducible limit of water saturation. However the relative permeability is unity for water 
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and oil flow respectively and (2a) simplifies greatly for this problem. The flow resistance arises 
here from the viscosities of oil and water. For a domain of length L the average oil and water 
velocities are equal and equal to the speed of movement of the front. For the Newtonian case 
this speed is estimated from: 

u = K(p1 - p1)/(µwx) = K(p1 - p2)/(µo(L - x)) 
Here p1, p2 and p1 are the injection, exit plane and the interface pressures respectively x indicates 
the depth penetrated by the water-oil interface. Eliminating p1, the expression for the front speed 
is obtained as: 

At t = 0, x = 0 and at any time t we update x as x (new) = x (old) + u∆t, where u is calculated 
from (8) using the old value of x. Oil recovery is measured in terms of ppv as ppv = 100x/L. 

When the shear thinning behaviour of oil is taken into consideration, a closed form solution 
for u does not exist. In terms of p1, p2 and pl as well as the power-law index n, the modified 
form of Darcy's law (2a) can be written as: 

For each x, (9) is solved for p1 iteratively. With this value of p1 the interface velocity u is calculated 
as: 

The same procedure as given after (8) is adopted to obtain x at any time t and finally the ppv 
as a measure of oil recovery. 

RESULTS 

We present results for the formation shown in Figure 1, equations of state Kr = Kr(Sw) and 
pc = pc(Sw) in Figures 2 and data given in Table 1. Oil is modelled as a Newtonian fluid (n = 1) 
as well as a shear thinning fluid (n < 1). For the study of shear thinning behaviour of oil, a 
modified Darcy's law is used (2c) and the value of n as it appears in (2c) is taken to be 0.6. This 
value of n encompasses a wide variety of crude oils4. The formation temperature and the injected 
water temperature are taken to be equal. Temperature is, however, used as a parameter in the 
analysis since oil viscosity is a strong function of temperature. The data for ppv corresponds to 
the end of a three hour simulation. Grid refinement studies beyond what was given earlier show 
no significant change in the results reported here. 

The problem of n = 1 (Newtonian fluid) for oil is considered first. Figure 4 shows oil recovery 
in terms of ppv as a function of the formation temperature for the Newtonian behaviour of oil. 
The three cases, namely injection without surfactants, with surfactants and the ideal case or zero 
capillary resistance are compared here. The effect of the formation temperature is also visible 
in this Figure. An increase in the temperature lowers oil viscosity and raises oil recovery. However, 
the effect of lowering surface tension can be seen to be dramatic in terms of an increase in ppv. 
In particular the comparison between the magnitudes of ppv with and without surface tension 
shows that oil recovery can be improved by nearly a factor of seven. 
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Figure 5 delineates the effect of shear thinning behaviour of oil. Oil recovery in the presence 
of shear thinning behaviour is compared with the fact that in the presence of Newtonian behaviour 
for all the three cases mentioned above. Shear thinning behaviour is characterized by a decrease 
in the slope of shear stress-shear deformation curve at increasing values of the shear stresses. 
Accordingly an increase in oil recovery is to be expected and this is shown in Figure 5. The 
extent of increase in ppv is small at small times and is progressively higher at larger times. 
However, in the presence of surfactants the fractional increase in ppv for departures of n from 
unity is small. 

Figure 6 compares water saturation profiles after three hours of injection with and without 
surfactants. It can be seen that water migration is diffuse in case (a) (no surfactant) and case 
(b) (practical surfactants); however, it moves as a front through the oil-rich region when capillary 



ENHANCED OIL RECOVERY USING SURFACTANTS 311 

resistance is zero (case (c)). Surfactants that show this degree of effectiveness remain to be 
synthesized. 

REFERENCES 

1 Uren, L. C. and Fahmy, E. H. Factors Influencing the Recovery of Petroleum from Unconsolidated Sands by Water 
Flooding, AIME, Vol. 318 (1927) 

2 Al-Fariss, T. and Pinder, K. L. Flow through porous media of a shear thinning fluid with yield stress, Can. J. Chem. 
Eng., 65, 391-405 (1987) 

3 Ewing, R. E. (Ed.) Mathematics of Reservoir Simulation, SIAM, Philadelphia (1983) 
4 Aziz, K. Modeling of thermal oil recovery processes, in Mathematical and Computational Methods in Seismic 

Exploration and Reservoir Modeling, SIAM, Philadelphia (1986) 
5 Boberg, T. C. Thermal Methods of Oil Recovery, Exxon Monograph, John Wiley, New York (1988) 
6 Barenblatt, G. I., Entov, V. M. and Ryzhik, V. M. Theory of Fluid Flows Through Natural Rocks, Kluwer, Dordrecht 

(1990) 
7 Duff, I. S. MA28—A Set of Fortran Subroutines for Sparse Unsymmetric Linear Equations, AERE Harwell (1980) 
8 Pillai, K. M. and Muralidhar, K. A numerical study of oil recovery using water injection method, Num. Heat Transfer, 

(A) 24, 305-322 (1993) 


